Cyclophellitol is a potent and selective mechanism-based retaining β-glucosidase inhibitor that has served as a versatile starting point for the development of activity-based glycosidase probes (ABPs). We developed routes of synthesis of eight mono- and dideoxycyclophellitols and cyclophellitol aziridines, the latter as ABPs carrying either a biotin or fluorophore linked to the aziridine nitrogen. We reveal the potency of these 24 compounds as inhibitors of the three human retaining β-glucosidases, GBA1, GBA2 and GBA3. We show that 3,6-dideoxy-β-galacto-cyclophellitol aziridine selectively captures GBA3 over GBA1 and GBA2 in extracts of cells overexpressing both GBA2 and GBA3. We also identify a probe that selectively labels GBA1 and GBA2 over GBA3 at lower concentrations. In sum, the here-presented studies reveal new chemistries to prepare chiral, substituted cyclitol epoxides and aziridines, add to the growing suite of cyclophellitols varying in configuration and substitution pattern, and yielded a reagent that may find use to investigate the physiological role and therapeutic relevance of the most elusive of the three retaining β-glucosidases: GBA3.
Keywords: Carbasugar; Cyclophellitol; Deoxygenation; Glucosidase; Inhibitors and activity-based probes (ABPs).
© 2024 The Author(s). Chemistry - A European Journal published by Wiley-VCH GmbH.