Identification and validation of leukemia inhibitory factor as a protective factor in ischemic acute kidney injury

Am J Med Sci. 2024 Sep 21:S0002-9629(24)01477-0. doi: 10.1016/j.amjms.2024.09.010. Online ahead of print.

Abstract

Background: Ischemia-reperfusion injury (IRI) is a common pathophysiological mechanism of acute kidney injury (AKI). There is an urgent need for a more comprehensive analysis of its underlying mechanisms.

Materials and methods: The RNA-sequencing dataset GSE153625 was used to examine differentially expressed genes (DEGs) of kidney tissues in IRI-AKI mice compared with sham mice. We used 10 algorithms provided by cytohubba plugin and four external datasets (GSE192532, GSE52004, GSE98622, and GSE185383) to screen for hub genes. The IRI-AKI mouse model with different reperfusion times was established to validate the expression of hub gene in the kidneys. HK-2 cells were cultured in vitro under hypoxia/reoxygenation (H/R) conditions, via transfection with si-LIF or supplementation with the LIF protein to explore the function of the LIF gene.

Results: We screened a total of 1,540 DEGs in the IRI group compared with the sham group and identified that the LIF hub gene may play potential roles in IRI-AKI. LIF was markedly upregulated in the kidney tissues of IRI-AKI mice, as well as in HK-2 cells grown under H/R conditions. The knockdown of LIF aggravated apoptosis and oxidative stress (OS) injury under H/R conditions. Administration of the LIF protein rescued the effects of si-LIF, alleviating cellular apoptosis and OS.

Conclusion: These findings indicate an important role of the LIF gene in term of regulating apoptosis and OS in the early phases of IRI-AKI. Targeting LIF may therefore represent a promising therapeutic strategy for IRI-AKI.

Keywords: Acute kidney injury; HK-2 cell; Ischemia-reperfusion injury; Leukemia inhibitory factor.