Glial alterations in the glutamatergic and GABAergic signaling pathways in a mouse model of Lafora disease, a severe form of progressive myoclonus epilepsy

bioRxiv [Preprint]. 2024 Sep 15:2024.09.13.612874. doi: 10.1101/2024.09.13.612874.

Abstract

Lafora disease (LD; OMIM#254780) is a rare form of progressive myoclonus epilepsy characterized by the accumulation of insoluble deposits of aberrant glycogen (polyglucosans), named Lafora bodies (LBs), in the brain but also in peripheral tissues. It is assumed that the accumulation of LBs is related to the appearance of the characteristic pathological features of the disease. In mouse models of LD, we and others have reported an increase in the levels of reactive astrocytes and activated microglia, which triggers the expression of the different pro-inflammatory mediators. Recently, we have demonstrated that the TNF and IL-6 inflammatory signaling pathways are the main mediators of the neuroinflammatory phenotype associated with the disease. In this work, we present evidence that the activation of these pathways produces a dysregulation in the levels of different subunits of the excitatory ionotropic glutamatergic receptors (phopho-GluN2B, phospho-GluA2, GluK2) and also an increase in the levels of the GABA transporter GAT1 in the hippocampus of the Epm2b-/- mice. In addition, we present evidence of the presence of activated forms of the Src and Lyn protein kinases in this area. These effects may increase the excitatory glutamatergic signaling and decrease the inhibitory GABAergic tone, leading to hyper-excitability. More importantly, the enhanced production of these subunits occurs in non-neuronal cells such as activated microglia and reactive astrocytes, pointing out a key role of glia in the pathophysiology of LD.

Publication types

  • Preprint