Spatiotemporal regulation of organelle transport by spindle position checkpoint kinase Kin4

J Cell Sci. 2024 Nov 1;137(21):jcs261948. doi: 10.1242/jcs.261948. Epub 2024 Nov 13.

Abstract

Asymmetric cell division in Saccharomyces cerevisiae involves class V myosin-dependent transport of organelles along the polarised actin cytoskeleton to the emerging bud. Vac17 is the vacuole/lysosome-specific myosin receptor. Its timely breakdown terminates transport and results in the proper positioning of vacuoles in the bud. Vac17 breakdown is controlled by the bud-concentrated p21-activated kinase Cla4, and the E3-ubiquitin ligase Dma1. We found that the spindle position checkpoint kinase Kin4 and, to a lesser extent, its paralog Frk1 contribute to successful vacuole transport by preventing the premature breakdown of Vac17 by Cla4 and Dma1. Furthermore, Kin4 and Cla4 contribute to the regulation of peroxisome transport. We conclude that Kin4 antagonises the Cla4/Dma1 pathway to coordinate spatiotemporal regulation of organelle transport.

Keywords: Organelle inheritance; PAK; Peroxisome; SPOC; Spindle position checkpoint; Vacuole; p21-activated kinase.

MeSH terms

  • Biological Transport
  • Organelles / metabolism
  • Peroxisomes / metabolism
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism
  • Receptors, Cell Surface
  • Saccharomyces cerevisiae Proteins* / genetics
  • Saccharomyces cerevisiae Proteins* / metabolism
  • Saccharomyces cerevisiae* / metabolism
  • Ubiquitin-Protein Ligases / genetics
  • Ubiquitin-Protein Ligases / metabolism
  • Vacuoles / metabolism
  • Vesicular Transport Proteins
  • p21-Activated Kinases / genetics
  • p21-Activated Kinases / metabolism

Substances

  • Saccharomyces cerevisiae Proteins
  • VAC17 protein, S cerevisiae
  • CLA4 protein, S cerevisiae
  • Protein Serine-Threonine Kinases
  • p21-Activated Kinases
  • Ubiquitin-Protein Ligases
  • Receptors, Cell Surface
  • Vesicular Transport Proteins