An injectable decellularized extracellular matrix hydrogel with cortical neuron-derived exosomes enhances tissue repair following traumatic spinal cord injury

Mater Today Bio. 2024 Sep 14:28:101250. doi: 10.1016/j.mtbio.2024.101250. eCollection 2024 Oct.

Abstract

Traumatic spinal cord injury (SCI), known for its limited intrinsic regeneration capacity, often results in considerable neurological impairment. Studies suggest that therapeutic techniques utilizing exosomes (Exo) to promote tissue regeneration and modulate immune responses are promising for SCI treatment. However, combining exosome therapy with biomaterials for SCI treatment is not very effective. This study developed an adhesive hydrogel using exosomes secreted by cortical neurons derived from human induced pluripotent stem cells (iPSCs) and decellularized extracellular matrix (dECM) from human umbilical cord mesenchymal stem cells (hUCMSCs) to enhance motor function recovery post-SCI. In vitro assessments demonstrated the excellent cytocompatibility of the dECM hydrogel. Additionally, the Exo-dECM hydrogel facilitated the polarization of early M2 macrophages, reduced neuronal apoptosis, and established a pro-regenerative microenvironment in a rodent SCI model. Subsequent analyses revealed significant activation of endogenous neural stem cells and promotion of axon regeneration and remyelination at eight weeks post-surgery. The Exo-dECM hydrogel also promoted the functional recovery and preservation of urinary tissue in SCI-afflicted rats. These findings highlighted that the Exo-dECM hydrogel is a promising therapeutic strategy for treating SCI.

Keywords: Cortical neurons; Decellularized extracellular matrix; Exosomes; Nerve regeneration; Spinal cord injury; Umbilical cord mesenchymal stem cells.