A simplified approach to discriminate between healthy subjects and patients with heart failure using cardiac magnetic resonance myocardial deformation imaging

Eur Heart J Imaging Methods Pract. 2024 Sep 12;2(3):qyae093. doi: 10.1093/ehjimp/qyae093. eCollection 2024 Jul.

Abstract

Aims: Left ventricular global longitudinal strain (LV-GLS) shows promise as a marker to detect early heart failure (HF). This study sought to (i) establish cardiac magnetic resonance imaging (CMR)-derived LV-GLS cut-offs to differentiate healthy from HF for both acquisition-based and post-processing techniques, (ii) assess agreement, and (iii) provide a method to convert LV-GLS between both techniques.

Methods and results: A secondary analysis of a prospective study enrolling healthy subjects (n = 19) and HF patients (n = 56) was conducted. LV-GLS was measured using fast strain-encoded imaging (fSENC) and feature tracking (FT). Receiver operating characteristic (ROC) analyses were performed to derive and evaluate LV-GLS cut-offs discriminating between healthy, HF with mild deformation impairment (DI), and HF with severe DI. Linear regression and Bland-Altman analyses assessed agreement. Cut-offs discriminating between healthy and HF were identified at -19.3% and -15.1% for fSENC and FT, respectively. Cut-offs of -15.8% (fSENC) and -10.8% (FT) further distinguished mild from severe DI. No significant differences in area under ROC curve were identified between fSENC and FT. Bland-Altman analysis revealed a bias of -4.01%, 95% CI -4.42, -3.50 for FT, considering fSENC as reference. Linear regression suggested a factor of 0.76 to rescale fSENC-derived LV-GLS to FT. Using this factor on fSENC-derived cut-offs yielded rescaled FT LV-GLS cut-offs of -14.7% (healthy vs. HF) and -12% (mild vs. severe DI).

Conclusion: LV-GLS distinguishes healthy from HF with high accuracy. Each measurement technique requires distinct cut-offs, but rescaling factors facilitate conversion. An FT-based LV-GLS ≥ -15% simplifies HF detection in clinical routine.

Keywords: cardiac magnetic resonance imaging; cut-off; deformation imaging; early identification of heart failure; global longitudinal strain.