1-Tetradecanol phase change material microcapsules coating on cotton fabric for enhanced thermoregulation

Int J Biol Macromol. 2024 Sep 23;280(Pt 3):135926. doi: 10.1016/j.ijbiomac.2024.135926. Online ahead of print.

Abstract

Rising climate change and extreme weather conditions underpin thermoregulation limitations of conventional textiles. This study investigates enhancing the thermal properties of cotton fabric by incorporating synthesized 1-tetradecanol (TD) phase change material (PCM) microcapsules. Characterization of the TD microcapsules was performed using dynamic light scattering (DLS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The microcapsules (average size of 0.49 μm) displayed a melting enthalpy (∆Hm) of 105 J·g-1 and a crystallization enthalpy (∆Hc) of 51 J·g-1. The microcapsules were mixed with the acrylic binder in three different ratios (75:25, 50:50, and 25:75). Hydrothermal, knife-over-roll, and pad-dry-cure methods were employed for coating microcapsules to cotton fabric. Microcapsule coating on cotton fabric using hydrothermal coating with a 75:25 microcapsule binder ratio achieved the highest add-on (55 %) and good durability after 25 home washes. The thermal insulation R-value of the coated fabric was enhanced (0.0029 m2 K·W-1) at 40 °C. The real-time test showed a temperature difference of 2.8 °C and thermal imaging displayed lower emissivity for TD-coated fabric. The TD microcapsule coating offers a promising method for developing climate-responsive textiles, enhancing thermal comfort, and reducing energy consumption in heating and cooling systems.

Keywords: Coating; Hydrothermal; Microcapsule binder ratio; Microencapsulation; PCM; Thermal insulation; Thermal resistance.