Background: Nontyphoidal Salmonella (NTS) outbreaks of invasive diseases are increasing. Whether the genetic diversity of invasive NTS correlates with the clinical characteristics and bacteremia development in NTS infections remains unclear. In this study, we compared the global transcriptomes between bacteremic and nonbacteremic NTS strains after their interaction with human intestinal epithelial cells in vitro.
Methods: We selected clinical isolates obtained from stool and blood samples of patients with or without bacteremia and patients with high and low C-reactive protein (CRP) levels. The bacterial RNA samples were isolated after coculturing with Caco-2 cells for RNA sequencing and subsequent analyses.
Results: CRP is an unreliable predictive maker for NTS bacteremia with a median CRP level of 1.6 mg/dL. Certain Salmonella Pathogenicity Island (SPI)-1 genes (sipC, sipA, sicA, sipD, and sipB), SPI-2 genes (ssaP, ssrA, and ssaS), and six SPI-4 genes (siiA, siiB, siiC, siiD, siiE, and siiF) remained upregulated in the bacteremic blood-derived strains but significantly downregulated in the nonbacteremic strains after their interaction with Caco-2 cells. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis identified that arginine biosynthesis, ascorbate and aldarate metabolism, and phosphotransferase system pathways were activated in bacteremic NTS strains after Caco-2 cell priming.
Conclusion: CRP levels were not correlated with bacteremia development. Significant regulation of certain SPI genes in bacteremic NTS strains after Caco-2 cell priming; bacteremia development might be influenced by the host immune response and the extent to which specific metabolism pathways in NTS strains can be prevented from invading the bloodstream.
Keywords: Bacteremia; C-reactive protein; Global transcriptome; Nontyphoidal Salmonella; RNA sequencing.
Copyright © 2024. Published by Elsevier B.V.