Current cancer immunotherapies exhibit low response rates attributed to suppressive tumor immune microenvironments (TIMEs). To address these unfavorable TIMEs, supplementation with tumor-associated antigens and stimulation of immune cells at target sites are indispensable for eliciting anti-tumoral immune responses. Previous research has explored the induction of immunotherapy through multiple injections and implants; however, these approaches lack consideration for patient convenience and the implementation of finely tunable immune response control systems to mitigate the side effects of over-inflammatory responses, such as cytokine storms. In this context, we describe a patient-centric nano-gel-nano system capable of sustained generation of tumor-associated antigens and release of adjuvants. This is achieved through the specific delivery of drugs to cancer cells and antigens/adjuvants to immune cells over the long term, maintaining proper concentrations within the tumor site with a single injection. This system demonstrates local immunity against tumors with a single injection, enhances the therapeutic efficacy of immune checkpoint blockades, and induces systemic and memory T cell responses, thus minimizing systemic side effects.
Keywords: In situ cancer vaccine; Injectable hydrogel; Multi-targetable; Nanocomplexes; Patient-favorable.
© 2024 The Authors.