Associations of SEMA7A, SEMA4D, ADAMTS10, and ADAM8 with KRAS, NRAS, BRAF, PIK3CA, and AKT Gene Mutations, Microsatellite Instability Status, and Cytokine Expression in Colorectal Cancer Tissue

Curr Issues Mol Biol. 2024 Sep 15;46(9):10218-10248. doi: 10.3390/cimb46090609.

Abstract

Semaphorins (SEMAs), ADAM, and ADAMTS family members are implicated in various cancer progression events within the tumor microenvironment across different cancers. In this study, we aimed to evaluate the expression of SEMA7A, SEMA4D, ADAM8, and ADAMTS10 in colorectal cancer (CRC) in relation to the mutational landscape of KRAS, NRAS, BRAF, PIK3CA, and AKT genes, microsatellite instability (MSI) status, and clinicopathological features. We also examined the associations between the expression of these proteins and selected cytokines, chemokines, and growth factors, assessed using a multiplex assay. Protein concentrations were quantified using ELISA in CRC tumors and tumor-free surgical margin tissue homogenates. Gene mutations were evaluated via RT-PCR, and MSI status was determined using immunohistochemistry (IHC). GSEA and statistical analyses were performed using R Studio. We observed a significantly elevated expression of SEMA7A in BRAF-mutant CRC tumors and an overexpression of ADAM8 in KRAS 12/13-mutant tumors. The expression of ADAMTS10 was decreased in PIK3CA-mutant CRC tumors. No significant differences in the expression of the examined proteins were observed based on MSI status. The SEMA7A and SEMA4D expressions were correlated with the expression of numerous cytokines associated with various immune processes. The potential immunomodulatory functions of these molecules and their suitability as therapeutic targets require further investigation.

Keywords: ADAM (a disintegrin and metalloprotease) proteins; ADAM8; ADAMTS10; K-ras oncogene; SEMA4D; colorectal cancer (CRC); instability; microenvironment; microsatellite; proto-oncogene proteins B-raf (BRAF); semaphorin 7A (SEMA7A); tumor.