Specific lipid isomers are functionally critical, but their structural rigidity and usually minute geometry differences make separating them harder than other biomolecules. Such separations by ion mobility spectrometry (IMS) were recently enabled by new high-definition methods using dynamic electric fields, but major resolution gains are needed. Another problem of identifying many isomers with no unique fragments in ergodic collision-induced dissociation (CID) was partly addressed by the direct ozone-induced dissociation (OzID) that localizes the double bonds, but a low reaction efficiency has limited the sensitivity, dynamic range, throughput, and compatibility with other tools. Typically lipids are analyzed by MS as singly charged protonated, deprotonated, or ammoniated ions. Here, we explore the differential IMS (FAIMS) separations with OzID for exemplary lipids cationized by polyvalent metals. These multiply charged adducts have much greater FAIMS compensation voltages (UC) than the 1+ ions, with up to 10-fold resolution gain enabling baseline isomer separations even at a moderate resolving power of the SelexION stage. Concomitantly OzID speeds up by many orders of magnitude, producing a high yield of diagnostic fragments already in 1 ms. These capabilities can be ported to the superior high-definition FAIMS and high-pressure OzID systems to take lipidomic analyses to the next level.