Boat acceleration profiles can provide valuable information for coaches and practitioners to make meaningful technical interventions and monitor the determinants of success in rowing. Previous studies have used simple feature detection methods to identify key phases within individual strokes, such as drive onset, drive time, drive offset and stroke time. However, based on skill level, technique or boat class, the hull acceleration profile can differ, making robust feature detection more challenging. The current study's purpose is to employ the undecimated wavelet transform (UWT) technique to detect individual features in the stroke acceleration profile from a single rowing hull-mounted accelerometer. In this investigation, the temporal and kinematic values obtained using the AdMosTM sensor in conjunction with the UWT processing approach were strongly correlated with the comparative measures of the Peach™ instrumented oarlock system. The measures for stroke time displayed very strong agreeability between the systems for all boat classes, with ICC values of 0.993, 0.963 and 0.954 for the W8+, W4- and W1x boats, respectively. Similarly, the drive time was also very consistent, with strong to very strong agreeability, producing ICC values of 0.937, 0.901 and 0.881 for the W8+, W4- and W1x boat classes. Further, a Bland-Altman analysis displayed little to no bias between the AdMosTM-derived and Peach™ measures, indicating that there were no systematic discrepancies between signals. This single-sensor solution could form the basis for a simple, cost-effective and accessible alternative to multi-sensor instrumented systems for the determination of sub-stroke kinematic phases.
Keywords: IMU; machine learning; rowing; sport; waveform.