Nipah virus (NiV), of the Paramyxoviridae family, causes highly fatal infections in humans and is associated with severe neurological and respiratory diseases. Currently, no commercial vaccine is available for human use. Here, eight structure-based mammalian-expressed recombinant proteins harboring the NiV surface proteins, fusion glycoprotein (F), and the major attachment glycoprotein (G) were produced. Specifically, prefusion NiV-F and/or NiV-G glycoproteins expressed in monomeric, multimeric (trimeric F and tetra G), or chimeric forms were evaluated for their properties as sub-unit vaccine candidates. The antigenicity of the recombinant NiV glycoproteins was evaluated in intramuscularly immunized mice, and the antibodies in serum were assessed. Predictably, all homologous immunizations exhibited immunogenicity, and neutralizing antibodies to VSV-luciferase-based pseudovirus expressing NiV-GF glycoproteins were found in all groups. Comparatively, neutralizing antibodies were highest in vaccines designed in their multimeric structures and administered as bivalent (GMYtet + GBDtet) and trivalent (Ftri + GMYtet + GBDtet). Additionally, while all adjuvants were able to elicit an immunogenic response in vaccinated groups, bivalent (GMYtet + GBDtet) and trivalent (Ftri + GMYtet + GBDtet) induced more potent neutralizing antibodies when administered with oil-in-water nano-emulsion adjuvant, AddaS03. For all experiments, the bivalent GMYtet + GBDtet was the most immunogenic vaccine candidate. Results from this study highlight the potential use of these mammalian-expressed recombinant NiV as vaccine candidates, deserving further exploration.
Keywords: Nipah virus; antigenicity; pseudotype neutralization assay; recombinant vaccine.