RNA-binding proteins (RBPs) modulate all aspects of RNA metabolism, but a comprehensive picture of RBP expression across tissues is lacking. Here, we describe our development of the method we call HARD-AP that robustly retrieves RBPs and tightly associated RNA regulatory complexes from cultured cells and fresh tissues. We successfully use HARD-AP to establish a comprehensive atlas of RBPs across mouse primary organs. We then systematically map RNA-binding sites of these RBPs using machine learning-based modeling. Notably, the modeling reveals that the LIM domain as an RNA-binding domain in many RBPs. We validate the LIM-domain-only protein Csrp1 as a tissue-dependent RNA binding protein. Taken together, HARD-AP is a powerful approach that can be used to identify RBPomes from any type of sample, allowing comprehensive and physiologically relevant networks of RNA-protein interactions.
© 2024. The Author(s).