Biocompatible Native Hyaluronan Nanofibers Fabricated via Aqueous PEO-Assisted Electrospinning and Heat-Quench Process

ACS Omega. 2024 Sep 10;9(38):40010-40018. doi: 10.1021/acsomega.4c05851. eCollection 2024 Sep 24.

Abstract

Hyaluronan (HA) is widely used in cosmetic and biomedical applications due to its excellent biocompatibility and potential to promote wound healing. Nanofibrous HA, mimicking the extracellular matrix (ECM), is considered promising for therapeutic and cosmetic applications. However, the electrospinning process of HA often necessitates cytotoxic solvents and chemical modifications, compromising its biocompatibility and advantageous properties. In this study, poly(ethylene oxide) (PEO) was added to an aqueous solution of natural HA to improve its spinnability, enabling HA to be electrospun into fibers. The HA was rendered water-insoluble by treatment with an acidic solution, and the amorphized PEO, achieved by heat-quenching, was removed through water washing. This method distinguishes it from previous reports of fibers blended with PEO or other water-soluble polymers. Consequently, the resulting HA gel fibers demonstrated suitability for mesenchymal stem cell adhesion due to the exposure of HA on the fiber surface. Additionally, HA fibers were successfully applied directly onto the skin using a hand-held electrospinning device, indicating the potential for point-of-care and home use applications.