Women's educational attainment and contraceptive prevalence are two mechanisms identified as having an accelerating effect on fertility decline and that can be directly impacted by policy. Quantifying the potential accelerating effect of education and family planning policies on fertility decline in a probabilistic way is of interest to policymakers, particularly in high-fertility countries. We propose a conditional Bayesian hierarchical model for projecting fertility given education and family planning policy interventions. To illustrate the effect policy changes could have on future fertility, we create probabilistic projections of fertility that condition on scenarios such as achieving the Sustainable Development Goals (SDGs) for universal secondary education and universal access to family planning by 2030.
Keywords: Bayesian hierarchical model; Sustainable Development Goals; fertility.