Steady-State Free Precession (SSFP) NMR Spectroscopy for Sensitivity Enhancement in Complex Environmental and Biological Samples Using Both High-Field and Low-Field NMR

Anal Chem. 2024 Oct 15;96(41):16260-16268. doi: 10.1021/acs.analchem.4c03200. Epub 2024 Oct 1.

Abstract

Nuclear magnetic resonance (NMR) spectroscopy is a valuable and complementary tool in environmental research, but it is underutilized due to the cost, size, and maintenance requirements of standard "high-field" NMR spectrometers. "Low-field" NMR spectrometers are a financially and physically accessible alternative, but their lower sensitivity and increased spectral overlap limit the analysis of heterogeneous environmental/biological media, especially with fast-relaxing samples that produce broad, low-intensity spectra. This study therefore investigates the potential of the steady-state free precession (SSFP) experiment to enhance signal-to-noise ratios (SNRs) of fast-relaxing, complex samples at both high- and low-field. SSFP works by obtaining steady-state transverse signal using a train of equally spaced radiofrequency pulses with the same flip angle and a time between pulses less than the transverse relaxation time, allowing for thousands of scans to be summed in a short time period. Here, 13C-SSFP is applied to samples of varying complexity (egg white, dissolved organic matter, and crude oil) at low-field and at high-field for testing and comparison. The potential of in vivo SSFP NMR is additionally investigated by applying 31P-SSFP to live Eisenia fetida at high-field. In some samples, SSFP increased 13C SNR by over 2000% at both high-field and low-field compared to standard 13C NMR and enabled detection of peaks that were not observable by standard 13C NMR. Ultimately, SSFP holds great potential for improving analysis of fast-relaxing, complex samples, which could in turn make low-field NMR spectroscopy a more effective tool not only in environmental/biological research but also in numerous other disciplines.

MeSH terms

  • Animals
  • Magnetic Resonance Spectroscopy* / methods
  • Petroleum / analysis
  • Signal-To-Noise Ratio*

Substances

  • Petroleum