In this work, we describe the complex formation and radiochemistry of the cyclen-based chelator DOTI-Me bearing four methylimidazole arms. Radiolabeling properties were evaluated for 52gMn, 64Cu, 68Ga, 111In, 161Tb, and 177Lu, and DOTI-Me showed distinct differences to the structurally related H4DOTA. While radiochemical conversions (RCCs) for 52gMn and 111In were comparable to those of H4DOTA, DOTI-Me was not suited for 68Ga. Conversely, quantitative RCCs were achieved for 64Cu at ambient temperature, while elevated temperatures were required for complexation with H4DOTA. For 161Tb and 177Lu, good but not quantitative RCCs were obtained with DOTI-Me. With the exemption of 68Ga3+, radiolabeled complexes showed high stability in ligand challenge experiments and in human serum. X-ray analysis of the nonradioactive complexes revealed the formation of 8-coordinate Mn2+ and In3+ DOTI-Me complexes. Cu2+ adopted a unique distorted square-pyramidal 2 + 3 with the neutral DOTI-Me ligand and a Jahn-Teller distorted 4 + 2 coordination geometry for the diprotonated H2DOTI-Me2+ cation, respectively. For Zn2+, the complex with HDOTI-Me+ showed a distorted 4 + 3 pentagonal bipyramidal geometry. Summarizing, the ligand DOTI-Me may be an interesting alternative to H4DOTA for 52gMn, 64Cu, 111In, 161Tb, and 177Lu, covering diagnostic as well as therapeutic radionuclides. Further studies of targeted radiopharmaceuticals based on the DOTI-Me scaffold in combination with the set of radiometals presented herein are thus warranted.