The RNA genome of orthoflaviviruses encodes a methyltransferase within the non-structural protein NS5, which is involved in 2'-O-methylation of the 5'-terminal nucleotide of the viral genome resulting in a cap1 structure. While a 2'-O-unmethylated cap0 structure is recognized in vertebrates by the RNA sensor RIG-I, the cap1 structure allows orthoflaviviruses to evade the vertebrate innate immune system. Here, we analyzed whether the cap0 structure is also recognized in mosquitoes. Replication analyses of 2'-O-methyltransferase deficient yellow fever virus mutants (YFV NS5-E218A) of the vaccine 17D and the wild-type Asibi strain in mosquito cells revealed a distinct downregulation of the cap0 viruses. Interestingly, the level of inhibition differed for various mosquito cells. The most striking difference was found in Aedes albopictus-derived C6/36 cells with YFV-17D cap0 replication being completely blocked. Replication of YFV-Asibi cap0 was also suppressed in mosquito cells but to a lower extent. Analyses using chimeras between YFV-17D and YFV-Asibi suggest that a synergistic effect of several mutations across the viral genome accompanied by a faster initial growth rate of YFV-Asibi cap1 correlates with the lower level of YFV-Asibi cap0 attenuation. Viral growth analyses in Dicer-2 knockout cells demonstrated that Dicer-2 is entirely dispensable for attenuating the YFV cap0 viruses. Translation of a replication-incompetent cap0 reporter YFV-17D genome was reduced in mosquito cells, indicating a cap0 sensing translation regulation mechanism. Further, oral infection of Aedes aegypti mosquitoes resulted in lower infection rates for YFV-Asibi cap0. The latter is related to lower viral loads found in the midguts, which largely diminished dissemination to secondary tissues. After intrathoracic infection, YFV-Asibi cap0 replicated slower and to decreased amounts in secondary tissues compared to YFV-Asibi cap1. These results suggest the existence of an ubiquitously expressed innate antiviral protein recognizing 5'-terminal RNA cap-modifications in mosquitoes, both in the midgut as well as in secondary tissues.
Copyright: © 2024 vom Hemdt et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.