Previously, we constructed a DNA-based next-generation sequencing (NGS) panel for an integrated diagnosis of gliomas according to the 2021 World Health Organization classification system. The aim of the current study was to evaluate the feasibility of a modified panel to include fusion gene detection via RNA-based analysis. Using this bimodal DNA/RNA panel, we analyzed 210 cases of gliomas and others to identify fusion genes in addition to gene alterations, including TERT promoter (TERTp) mutation and 1p/19q co-deletion, in formalin-fixed paraffin-embedded tissues. Of the 210 patients, fusion genes were detected in tumors of 35 patients. Eighteen of 112 glioblastomas (GBs) harbored fusion genes, including EGFR and FGFR3 fusions. In IDH-mutant astrocytoma, 6 of 30 cases showed fusion genes such as MET and NTRK2 fusions. Eleven molecular GBs and 20 not-elsewhere-classified cases harbored no gene fusions. Other 11 tumors including ependymoma, pilocytic astrocytoma, diffuse hemispheric glioma, infant-type hemispheric glioma, and solitary fibrous tumors exhibited diagnostic fusion genes. Overall, our results suggest that the all-in-one bimodal DNA/RNA panel is reliable for detecting diagnostic gene alterations in accordance with the latest WHO classification. The integrative pathological and molecular strategy could be valuable in confirmation of diagnosis and selection of treatment options for brain tumors.
Keywords: Bimodal DNA/RNA panel; Fusion gene; Glioma; Integrative diagnosis; NGS.
Copyright © 2024 The Authors. Published by Elsevier GmbH.. All rights reserved.