Closed-Loop Recycling of Wearable Electronic Textiles

Small. 2024 Dec;20(50):e2407207. doi: 10.1002/smll.202407207. Epub 2024 Oct 2.

Abstract

Wearable electronic textiles (e-textiles) are transforming personalized healthcare through innovative applications. However, integrating electronics into textiles for e-textile manufacturing exacerbates the rapidly growing issues of electronic waste (e-waste) and textile recycling due to the complicated recycling and disposal processes needed for mixed materials, including textile fibers, electronic materials, and components. Here, first closed-loop recycling for wearable e-textiles is reported by incorporating the thermal-pyrolysis of graphene-based e-textiles to convert them into graphene-like electrically conductive recycled powders. A scalable pad-dry coating technique is then used to reproduce graphene-based wearable e-textiles and demonstrate their potential healthcare applications as wearable electrodes for capturing electrocardiogram (ECG) signals and temperature sensors. Additionally, recycled graphene-based textile supercapacitor highlights their potential as sustainable energy storage devices, maintaining notable durability and retaining ≈94% capacitance after 1000 cycles with an areal capacitance of 4.92 mF cm⁻2. Such sustainable closed-loop recycling of e-textiles showcases the potential for their repurposing into multifunctional applications, promoting a circular approach that potentially prevents negative environmental impact and reduces landfill disposal.

Keywords: closed‐loop recycling; e‐textiles; graphene; sustainability; wearable.