Design, Synthesis, and Biological Evaluation of Novel Quinoline Derivatives against Phytopathogenic Bacteria Inspired from Natural Quinine Alkaloids

J Agric Food Chem. 2024 Oct 3. doi: 10.1021/acs.jafc.4c05509. Online ahead of print.

Abstract

A series of 2-(trifluoromethyl)-4-hydroxyquinoline derivatives were designed and synthesized with introduction of the antibacterial fragment amino alcohols, and their antibacterial activity against plant phytopathogenic bacteria was evaluated for the development of quinoline bactericides. It is worth noting that compound Qa5 exhibited excellent antibacterial activity in vitro with a minimum inhibitory concentration (MIC) value of 3.12 μg/mL against Xanthomonas oryzae (Xoo). Furthermore, in vivo assays demonstrated that the protective efficacy of Qa5 against rice bacterial blight at 200 μg/mL (33.0%) was superior to that of the commercial agent bismerthiazol (18.3%), while the curative efficacy (35.0%) was comparable to that of bismerthiazol (35.7%). The antibacterial mechanisms of Qa5 indicated that it affected the activity of bacteria by inducing intracellular oxidative damage in Xoo and disrupting the integrity of the bacterial cell membrane. The above results demonstrated that the novel quinoline derivative Qa5 possessed excellent in vitro and in vivo antibacterial activity, indicating its potential as a novel green agricultural antibacterial agent.

Keywords: Xanthomonas oryzae; amino alcohols; antibacterial evaluation; quinine; structure−activity relationship.