Introduction: Biomarker discovery is increasingly moving from single omics to multiomics, as well as from multi-cell omics to single-cell omics. These transitions have increasingly adopted digital transformation technologies to accelerate the progression from data to insight. Here, we will discuss the concept of 'digitalomics' and how digital transformation directly impacts biomarker discovery. This will ultimately assist clinicians in personalized therapy and precision-medicine treatment decisions.
Areas covered: Genotype-to-phenotype-based insight generation involves integrating large amounts of complex multiomic data. This data integration and analysis is aided through digital transformation, leading to better clinical outcomes. We also highlight the challenges and opportunities of Digitalomics, and provide examples of the application of Artificial Intelligence, cloud- and high-performance computing, and use of tensors for multiomic analysis workflows.
Expert opinion: Biomarker discovery, aided by digital transformation, is having a significant impact on cancer, cardiovascular, infectious, immunological, and neurological diseases, among others. Data insights garnered from multiomic analyses, combined with patient meta data, aids patient stratification and targeted treatment across a broad spectrum of diseases. Digital transformation offers time and cost savings while leading to improved patent healthcare. Here, we highlight the impact of digital transformation on multiomics- based biomarker discovery with specific applications related to oncology.
Keywords: Artificial intelligence; biomarkers; data; multiomics; oncology.