Unperceivable electrical noise stimulation has been applied to improve postural control through the enhancement of somatosensory feedback. It has been observed that stimulation with a pink noise (1/f) structure is more effective than stimulation with other noise structures. In addition, the 1/f structure embedded in the postural control system may have a superior effect on postural control stabilization. However, the direct relationship between the long-range correlations of the pink-noise signal applied to somatosensory receptors and those of the postural control system has not been elucidated. Thus, we aimed to explore a common long-range correlation factor shared in the time series of the provided noise and foot center of pressure (CoP) during quiet standing. Sixteen young adults stood quietly on the force platform for 65 s. Four noise conditions (no stimulation and stimulation of knee joints with white-, pink-, and red-noise-like signals) were employed during the standing trials. The detrending moving-average cross-correlation analysis revealed that in each of the anteroposterior and mediolateral directions, the CoP velocity time series displayed significant long-range cross-correlations with the white and pink noise signals provided at that time, whereas such an effect was not observed in the red noise signal. This result indicates that pink and white noise signals would alter the temporal behavior of the CoP during quiet standing, although the mechanism remains to be elucidated.
Keywords: Long-range cross-correlation; Pink noise; Quiet standing; Stochastic resonance.
Copyright © 2024 Elsevier B.V. All rights reserved.