Direct liquid injection pulsed-pressure MOCVD of large area MoS2 on Si/SiO2

Phys Chem Chem Phys. 2024 Oct 17;26(40):25772-25779. doi: 10.1039/d4cp00603h.

Abstract

Large-scale, high-quality growth of transition metal dichalcogenides (TMD) of controlled thickness is paramount for many applications in opto- and microelectronics. This paper describes the direct growth of well-controlled large area molybdenum disulfide (MoS2) on Si/SiO2 substrates by direct liquid injection pulsed-pressure metal-organic chemical vapor deposition (DLI-PP-MOCVD) using low-toxicity precursors. It is shown that control of the deposited thickness can be achieved by carefully tuning the amount of molybdenum precursor evaporated and that continuous layers are routinely obtained. Homogeneity and reproducibility have also been examined, as well as the average size of the grains. When targeting monolayer thickness, the MoS2 showed near stoichiometry (S/Mo = 1.93-1.95), low roughness and high photoluminescence (PL) quantum yield, equivalent to exfoliated monolayers and CVD MoS2 grown on the same substrates.