Purpose: This study evaluates the diagnostic performance of artificial intelligence (AI)-based coronary computed tomography angiography (CCTA) for detecting coronary artery disease (CAD) and assessing fractional flow reserve (FFR) in asymptomatic male marathon runners.
Material and methods: We prospectively recruited 100 asymptomatic male marathon runners over the age of 45 for CAD screening. CCTA was analyzed using AI models (CorEx and Spimed-AI) on a local server. The models focused on detecting significant CAD (≥ 50% diameter stenosis, CAD-RADS 3, 4, or 5) and distinguishing hemodynamically significant stenosis (FFR ≤ 0.8) from non-significant stenosis (FFR > 0.8). Statistical analysis included sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy.
Results: The AI model demonstrated high sensitivity, with 91.2% for any CAD and 100% for significant CAD, and high NPV, with 92.7% for any CAD and 100% for significant CAD. The diagnostic accuracy was 73.4% for any CAD and 90.4% for significant CAD. However, the PPV was lower, particularly for significant CAD (25.0%), indicating a higher incidence of false positives.
Conclusion: AI-enhanced CCTA is a valuable non-invasive tool for detecting CAD in asymptomatic, low-risk populations. The AI model exhibited high sensitivity and NPV, particularly for identifying significant stenosis, reinforcing its potential role in screening. However, limitations such as a lower PPV and overestimation of disease indicate that further refinement of AI algorithms is needed to improve specificity. Despite these challenges, AI-based CCTA offers significant promise when integrated with clinical expertise, enhancing diagnostic accuracy and guiding patient management in low-risk groups.
Keywords: Artificial intelligence; Coronary artery disease; Coronary computed tomography angiography; Diagnostic accuracy; Fractional flow reserve; Marathon runners.
© 2024. The Author(s).