The balance between cell growth, proliferation, and differentiation emerges from gene regulatory networks coupled to various signal transduction pathways, including reactive oxygen species (ROS) and transcription factors (TFs), enabling developmental responses to environmental cues. The primary root of Arabidopsis thaliana has become a valuable system for unravelling such networks. Recently, the role of TFs that mediate ROS inhibition of primary root growth has begun to be characterized. This study demonstrates that the MADS-box TF gene XAANTAL1 (XAL1) is an essential regulator of hydrogen peroxide (H2O2) in primary root growth and root stem cell niche identity. Interestingly, our findings indicated that XAL1 acts as a positive regulator of H2O2 concentration in the root meristem by directly regulating genes involved in oxidative stress response, such as PEROXIDASE 28 (PER28). Moreover, we found that XAL1 is necessary for the H2O2-induced inhibition of primary root growth through the negative regulation of peroxidase and catalase activities. Furthermore, XAL1, in conjunction with RETINOBLASTOMA-RELATED (RBR), is essential for positively regulating the differentiation of columella stem cells and for participating in primary root growth inhibition in response to oxidative stress induced by H2O2 treatment.
Keywords: Arabidopsis thaliana; MADS-box; PER28; RBR; ROS; XAL1/AGL12; hydrogen peroxide; oxidative stress; root development.
© The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Experimental Biology.