This work developed a novel sustainable adsorbent (PF-Aq) prepared by the amino-functionalization of palm oil fibers (PF). XPS, SEM/EDS, TGA/DSC, and FT-IR techniques proved the successful functionalization of the PF with the amino group. The PF-Aq adsorbent presents a high adsorption capacity for phosphate and Cr(VI) ions. Adsorption kinetics of the ions onto the PF-Aq followed the general-order models, with 240- and 300-min equilibrium times for phosphate and Cr(VI), respectively. The Freundlich equilibrium model can explain the adsorption of phosphate and Cr(VI) on the PF-Aq. Besides, the maximum adsorption capacities were 151.07 mg g-1 for phosphate and 206.08 mg g-1 for Cr(VI). The best pH for the adsorption of both ions on PF-Aq was 4.0. Interestingly, adsorption was exothermic for phosphate and endothermic for Cr(VI). The adsorption capacities were reduced by 16% for phosphate and 10% for Cr(VI) after 5 adsorption-desorption cycles, demonstrating the good recyclability of the PF-Aq. It can be concluded that PF-Aq is a relevant adsorbent to uptake phosphate and Cr(VI) from water due to its high adsorption capacity, low cost, recyclability, availability, and fast kinetics. Finally, the excellent adsorption potential results from inserting amino groups in the PF, allowing electrostatic interactions between adsorbent and adsorbate.
Keywords: Amino-functionalized adsorbent; Covalent grafting; Freundlich model; Recyclability; Sustainability.
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.