Macrocycles incorporating conformationally defined indoles are widely found in bioactive natural products. However, the catalytic enantioselective synthesis of planar-chiral indoles via indolization involving macrocyclization remains elusive. Herein, we present the first rhodium(III)-catalyzed atroposelective macrocyclization, which involves the C-H activation of aniline, and a subsequent oxidation [3 + 2] annulation reaction with an intramolecular alkyne. This protocol achieves the construction of indoles, macrocyclization, and planar chirality control in a single step. Importantly, this strategy produces macrocyclic atropisomers bearing full-carbon ansa chains, which represent challenging targets in organic synthesis. Thermodynamic experiments revealed that the rotational barrier of the full-carbon ansa chain-linked macrocyclic atropisomer was lower than that of the atropisomer bearing an oxa-ansa chain. The reaction mechanism was elucidated by computational studies, which revealed that the C-H activation and intramolecular alkyne insertion steps collectively determined the enantioselectivity.