Kaposi sarcoma (KS) is defined by aberrant angiogenesis driven by Kaposi sarcoma herpesvirus (KSHV)-infected spindle cells with endothelial characteristics. KS research is hindered by rapid loss of KSHV infection upon explant culture of tumor cells. Here, we establish patient-derived KS xenografts (PDXs) upon orthotopic implantation of cutaneous KS biopsies in immunodeficient mice. KS tumors were maintained in 27/28 PDX until experimental endpoint, up to 272 days in the first passage of recipient mice. KSHV latency associated nuclear antigen (LANA)+ endothelial cell density increased by a mean 4.3-fold in 14/15 PDX analyzed by IHC at passage 1 compared to respective input biopsies, regardless of implantation variables and clinical features of patients. The Ki-67 proliferation marker colocalized with LANA more frequently in PDXs. Spatial transcriptome analysis revealed increased expression of viral transcripts from latent and lytic gene classes in the PDX. The expanded KSHV+ regions of the PDX maintained signature gene expression of KS tumors, with enrichment in pathways associated with angiogenesis and endothelium development. Cells with characteristics of tumor-associated fibroblasts derived from PDX were propagated for 15 passages. These fibroblast-like cells were permissive for de novo KSHV infection, and one lineage produced CXCL12, a cancer-promoting chemokine. Spatial analysis revealed that fibroblasts are a likely source of CXCL12 signaling to CXCR4 that was upregulated in KS regions. The reproducible expansion of KSHV-infected endothelial cells in PDX from multiple donors and recapitulation of a KS tumor gene signature supports the application of patient-derived KS mouse models for studies of pathogenesis and novel therapies.