Accurate positioning using the Global Positioning System relies on accurate modeling of tropospheric delay. Estimated tropospheric delay must vary sufficiently to capture true variations; otherwise, systematic errors propagate into estimated positions, particularly the vertical. However, if the allowed delay variation is too large, the propagation of data noise into all parameters is amplified, reducing precision. Here we investigate the optimal choice of tropospheric constraints applied in the GipsyX software, which are specified by values of random walk process noise. We use the variability of 5-min estimated positions as a proxy for tropospheric error. Given that weighted mean 5-min positions closely replicate 24-h solutions, our ultimate goal is to improve 24-h positions and other daily products, such as precise orbit parameters. The commonly adopted default constraint for the zenith wet delay (ZWD) is 3 mm/√(hr) for 5-min data intervals. Using this constraint, we observe spurious wave-like patterns of 5-min vertical displacement estimates with amplitudes ~ 100 mm coincident with Winter Storm Ezekiel of November 27, 2019, across the central/eastern USA. Loosening the constraint suppresses the spurious waves and reduces 5-min vertical displacement variability while improving water vapor estimates. Further improvement can be achieved when optimizing constraints regionally, or for each station. Globally, results are typically optimized in the range of 6-12 mm/√(hr). Generally, we at least recommend loosening the constraint from the current default of 3 mm/√(hr) to 6 mm/√(hr) for ZWD every 300 s. Constraint values must be scaled by √(x/300) for alternative data intervals of x seconds.
Supplementary information: The online version contains supplementary material available at 10.1007/s00190-024-01898-3.
Keywords: Estimation strategy; GPS; GipsyX; Optimization; Random walk; Tropospheric delay.
© The Author(s) 2024.