A ratiometric electrochemiluminescence (ECL) aptamer-based sensing platform was fabricated for prostate-specific antigen (PSA) determination. Activated CdS nanocrystals/multi-walled carbon nanotubes (CdS/MCNTs) and luminol-Pt/PAMAM nanocomposites (L-Pt/PAMAM NCs) were synthesized and used as cathodic and anodic ECL emitters, respectively. Amino group-modified aptamers were assembled on carboxylated magnetic beads, followed by hybridization with probe DNA functionalized L-Pt/PAMAM NCs. In the presence of PSA, the aptamer would bind specifically to the target PSA, thereby releasing L-Pt/PAMAM NCs. After magnetic separation, the separated L-Pt/PAMAM NCs would hybridize with capture DNA on CdS/MCNTs coated on glassy carbon electrode. This binding would lead to a decrease in cathodic ECL signal of CdS/MCNTs, due to the efficient energy transfer from CdS/MCNTs to L-Pt/PAMAM NCs. Meanwhile, L-Pt/PAMAM brought the anodic ECL signal from luminol. With the increase of PSA concentration, the ECL emission from luminol increased and the ECL emission from CdS/MCNTs decreased. The ratio of ECL intensity of luminol at 0.55 V and CdS/MCNTs at - 1.25 V could be used to quantify the concentration of PSA. This method enables sensitive and reliable detection of PSA over a wide range from 0.05 to 200 ng mL-1, and the detection limit is 0.02 ng mL-1.
Keywords: Aptamer; Electrochemiluminescence; Energy transfer; PSA detection; Potential-resolved.
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.