Neuroendocrine neoplasms (NEN) originate from the secretory cells of the neuroendocrine system, with the majority arising in the gastrointestinal tract and pancreas. Given the heterogeneity in the biological behavior and morphological differentiation of these tumors, advanced imaging techniques are crucial for supporting the suspected diagnosis, accurate staging, and monitoring therapy. As most well-differentiated NEN demonstrate overexpression of somatostatin receptors (SSR) on the cell surface, SSR-directed PET/CT is considered the reference standard for imaging of this particular entity. SSR-PET/CT should be the imaging method of choice in every NEN G1 or G2 and considered for re-staging after both potentially curative and non-curative surgeries. The extent of SSR expression is also crucial for determining a patient's eligibility for peptide receptor radionuclide therapy (PRRT). PRRT utilizes [177Lu]Lu-DOTA-TATE to target the SSR receptor and can significantly prolong progression-free survival in patients with advanced, progressive neuroendocrine tumor of the gastroenteropancreatic system (GEP-NET). PET/CT is a central component of the multidisciplinary management of NEN. Variable follow-up intervals are recommended, considering that tumors with higher proliferation rates or advanced metastatic disease require more frequent assessments. The combination with other imaging modalities, like MRI, complements SSR-PET/CT, further enhancing overall diagnostic accuracy. KEY POINTS: Somatostatin receptor-PET/CT (SSR-PET/CT) is the guideline-recommended reference standard for imaging well-differentiated neuroendocrine tumors (NET). SSR-PET/CT should be the diagnostic imaging of choice for staging and post-therapy re-staging of grade 1 or 2 NET (G1 or G2). Variable follow-up intervals are recommended for NET G1 and G2. Tumors with higher proliferation rates or advanced metastatic disease necessitate more frequent assessments.
Keywords: Molecular imaging; Neuroendocrine tumors; Positron emission tomography computed tomography; Radiopharmaceuticals; Receptors (Somatostatin).
© 2024. The Author(s).