Sjögren's disease is a chronic autoimmune disease characterized by symptoms of oral and ocular dryness and extra-glandular manifestations. Mouth dryness is not only due to reduced saliva volume but also to alterations in the quality of salivary mucins in these patients. Mucins play a leading role in mucosa hydration and protection, where sulfated and sialylated oligosaccharides retain water molecules at the epithelial surface. The correct localization of glycosyltransferases and sulfotransferases within the Golgi apparatus determines adequate O-glycosylation and sulfation of mucins, which depends on specific golgins that tether enzyme-bearing vesicles. Here, we show that a golgin called Giantin is mislocalized in salivary glands from patients with Sjögren's disease and forms protein complexes with Gal3-O-sulfotransferases (Gal3STs), which change their localization in Giantin knockout and knockdown cells. Our results suggest that Giantin could tether Gal3ST-bearing vesicles and that its altered localization could affect Gal3ST activity, explaining the decreased sulfation of MUC5B observed in salivary glands from patients with Sjögren's disease.
Keywords: Autoimmune diseases; Autoimmunity; Cell biology; Glycobiology; Protein traffic.