To comprehend the effects of potentially invasive coral Tubastraea aurea on marine ecosystems, it is crucial to understand their adaptive strategies to survive environmental changes and perturbations. Therefore, a cross-transplantation study was conducted to assess the microbiome's role in the resilience of T. aurea to sudden environmental changes.Hydrographic analyses revealed distinct ecological conditions at two sites: a hydrothermal vent (HV) site, characterized by harsh environmental conditions serving as a natural laboratory for future oceanic changes, and a regular coastal site Fulong (FU). Both sites showed significant differences in pH, temperature, and dissolved oxygen. Using Oxford Nanopore Technologies, we examined bacterial dynamics in coral tissue, mucus and ambient sediment samples following cross-transplantation experiments. We observed a rapid shift in dominant bacterial groups post-transplantation with transplanted corals acquiring microbiomes similar to native corals from their respective sites within 16 days. The bacteria Endozoicomonas euniceicola and Ruegeria profundi were dominant in both native and transplanted corals, suggesting their critical role in coral resilience. Furthermore, the enrichment of certain bacterial taxa post-transplantation suggests that opportunistic species also contribute to host acclimatization. Functional profiling data indicated that there was site-specific adaptation because corals had acquired beneficial bacterial assemblages to assist them cope with environmental stressors. More specifically, there was a switch towards sulfur and nitrogen metabolism in corals that moved to high sulfidic environments, while corals transplanted into normal coastal environments showed enriched photoautotrophic processes due to their symbionts. Our study underscored the highly flexible microbiome of T. aurea and its pivotal role in facilitating host resilience to environmental perturbations, particularly in the context of its potential invasiveness. Hence, these findings contribute to the understanding of coral-microbiome dynamics and emphasize the necessity of considering microbially-mediated resilience in managing potentially invasive coral species in marine ecosystems around the world, especially as ocean conditions continue to change.
Keywords: Coral-microbiome dynamics; Cross-transplantation; Environmental stress adaptation; Hydrothermal vent; Microbiome flexibility; Oxford Nanopore Technologies.
Copyright © 2024. Published by Elsevier B.V.