Population connectivity and size reductions in the Anthropocene: the consequence of landscapes and historical bottlenecks in white forsythia fragmented habitats

BMC Ecol Evol. 2024 Oct 10;24(1):123. doi: 10.1186/s12862-024-02308-0.

Abstract

Background: White forsythia (Abeliophyllum distichum) is an endangered Korean Peninsula endemic that has been subjected to recent population genomics studies using SNPs via RAD sequencing. Here, we primarily employed the often underutilized haplotype information from RAD loci to further describe the species' previously uninvestigated haplotype-based genomic variation and structure, and genetic-geographic characteristics and gene flow patterns among its five earlier identified genetic groups. We also inferred the time of past events that may have impacted the effective population size of these groups, as well as the species' potential future distribution amidst the warming climate and anthropogenic threats.

Results: Our findings emphasized the recognition of the species' regional patterns of genetic structure, and the role of topography and its associated gene flow patterns as some of the possible factors that may have influenced the species' present-day fragmented population distribution. The inferred bottleneck events during the Anthropocene, some of which aligned with the time of historical catastrophic events on the Peninsula (e.g., the Korean War), were revealed to have contributed to the generally low effective population size of its five lineages, particularly those with marginal distributional range. Future distribution under both optimistic and pessimistic climatic scenarios suggests unlikely suitable habitats for these populations to expand from their current range limits, at least in the next 80 years.

Conclusions: The small effective population size and landscape-driven limited gene flow among white forsythia populations will remain a big challenge for the conservation management of the species' already fragmented population distribution. To help mitigate these impacts, the merging of various research approaches and the use of genomic data to their full potential is recommended to provide the optimized knowledge-based tools for the conservation of this endangered species, and other similar plants under pressure.

Keywords: Abeliophyllum distichum; Climate change; Korean endemic; Landscape genetics; RAD markers.

MeSH terms

  • Ecosystem*
  • Endangered Species
  • Gene Flow*
  • Haplotypes / genetics
  • Population Density
  • Republic of Korea