A 1024-Channel 268 nW/pixel 36×36 μ m2/channel Data-Compressive Neural Recording IC for High-Bandwidth Brain-Computer Interfaces

IEEE J Solid-State Circuits. 2024 Apr;59(4):1123-1136. doi: 10.1109/jssc.2023.3344798. Epub 2023 Dec 29.

Abstract

This paper presents a data-compressive neural recording IC for single-cell resolution high-bandwidth brain-computer interfaces. The IC features wired-OR lossy compression during digitization, thus preventing data deluge and massive data movement. By discarding unwanted baseline samples of the neural signals, the output data rate is reduced by 146× on average while allowing the reconstruction of spike samples. The recording array consists of pulse position modulation-based active digital pixels with a global single-slope analog-to-digital conversion scheme, which enables a low-power and compact pixel design with significantly simple routing and low array readout energy. Fabricated in a 28-nm CMOS process, the neural recording IC features 1024 channels (i.e., 32 × 32 array) with a pixel pitch of 36 μm that can be directly matched to a high-density microelectrode array. The pixel achieves 7.4 μVrms input-referred noise with a -3 dB bandwidth of 300-Hz to 5-kHz while consuming only 268 nW from a single 1-V supply. The IC achieves the smallest area per channel (36 × 36 μm2) and the highest energy efficiency among the state-of-the-art neural recording ICs published to date.

Keywords: Brain-computer interface (BCI); brain-machine interface (BMI); compression; multi-electrode array (MEA); neural interface; neural recording; pulse-position modulation (PPM); single-cell resolution.