Graphene-encapsulated nanocomposites: Synthesis, environmental applications, and future prospects

Sci Total Environ. 2024 Dec 10:955:176753. doi: 10.1016/j.scitotenv.2024.176753. Epub 2024 Oct 10.

Abstract

The discovery of graphene and its remarkable properties has sparked extensive research and innovation across various fields. Graphene and its derivatives, such as oxide and reduced graphene oxide, have high surface area, tunable porosity, strong surface affinity with organic molecules, and excellent electrical/thermal conductivity. However, the practical application of 2D graphene in aqueous environments is often limited by its tendency to stack, reducing its effectiveness. To address this challenge, the development of three-dimensional graphene structures, particularly graphene-encapsulated nanocomposites (GENs), offers a promising solution. GENs not only mitigate stacking issues but also promote flexible tailoring for specific applications through the incorporation of diverse fill materials. This customization allows for precise control over shape, size, porosity, selective adsorption, and advanced engineering capabilities, including the integration of multiple components and controlled release mechanisms. This review covers GEN synthesis strategies, including physical attachment, electrostatic interactions, chemical bonding, emulsification, chemical vapor deposition, aerosol methods, and nano-spray drying techniques. Key environmental applications of GENs are highlighted, with GENs showing 4-8 times greater micropollutant adsorption (compared to GAC), a 20-fold increase in photocatalytic pollutant degradation efficiency (compared to TiO2), a 21-fold enhancement in hydrogen production (compared to photocatalyst only), and a 20-45 % improvement in solar-driven water evaporation efficiency (compared to rGO). Additional applications include membrane fouling control, environmental sensing, resource generation, and enhancing thermal desalination through solar thermal harvesting. The review concludes by outlining future perspectives, emphasizing the need for improved 3D characterization techniques, more efficient large-scale production methods, and further optimization of multicomponent GENs for enhanced synergistic effects and broader environmental applications.

Keywords: 3D graphene material; Graphene-based nanocomposites; Nano spray drying technique; Organic contaminant removal.

Publication types

  • Review