Current study focused on Merremia vitifolia an ethnomedicinal plant, aiming to explore its medicinal properties comprehensively. Through qualitative and quantitative analysis, the study investigated the phytochemical components of M. vitifolia stem extract and assessed its antioxidant, anti-inflammatory, analgesic, antidepressant, anxiolytic, locomotor, and antidiarrheal activities. The evaluation involved a combination of in vitro, in vivo, and in silico approaches. In-vitro antioxidant activity was determined using the DPPH scavenging assay, while anti-inflammatory activity was assessed via a protein denaturation assay. In-vivo experiments included tests for antidepressant effects (FST, TST), anxiolytic effects (EPM, HBT), locomotor effects (OFT, HCT), and analgesic activity (formalin-induced licking test and acetic acid-induced writhing test). Additionally, the antidiarrheal effect was evaluated through castor oil-induced diarrhea and gastrointestinal motility tests. Fifteen bioactive compounds were identified based on their biological activities from GC/MS data and subjected to in silico molecular docking; ADME/T profiling and pass prediction. MEMVS had an IC50 value of 74.97 μg/mL and MEMVS elicited 77.17 ± 0.39 % inhibition protein denaturation compared to standard (87.23 ± 0.30 %) at 500 μg/mL. In addition, MEMVS induced a dose-dependent reduction in analgesic, neuropharmacological assay, inhibition in diarrheal feces count, and intestinal motility with a significant value (aP< 0.001). In computer-aided investigation, all compounds adhere to Lipinski's rule of five and demonstrate highest binding affinity to isolates compared to standard drugs, confirming laboratory findings. Research findings suggest that MEMVS holds promising potential, as a multifaceted therapeutic agent, exhibiting antioxidant, analgesic, anti-inflammatory, anti-diarrheal and neuropharmacological properties. However, further investigation is needed to fully harness its medicinal benefits.
Keywords: Anti-diarrheal; Antinociceptive; Antioxidant; GC–MS; In-silico; Merremia vitifolia; Neuropharmacology.
© 2024 The Authors. Published by Elsevier Ltd.