Objective: The immune status of the tumor microenvironment significantly impacts the clinical prognosis of triple-negative breast cancer (TNBC). The involvement of long noncoding RNAs (lncRNAs) in tumor immune infiltration is widely acknowledged. Therefore, it is crucial to explore the role of significant immune-related lncRNAs in TNBC.
Methods: We acquired RNA, single-cell sequencing, and clinical information on TNBC from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. To identify immune-related lncRNAs, immune infiltration subgroups were determined and verified using single-sample gene-set enrichment analysis, non-negative matrix factorization, and weighted gene co-expression network analysis. CIBERSORTx, deconvolution, drug sensitivity, and Scissor analyses revealed that differences in cell type and drug efficacy were associated with immune grouping.
Results: TNBC samples were classified into immune-desert (cold) and immune-inflamed (hot) subgroups based on a lncRNA model (including LINC01550, LY86-AS1, LINC00494, LINC00877, CHRM3-AS2, HCP5, MIR155HG, and PIK3CD-AS1). Furthermore, using in vitro experiments, we found that LINC01550 promoted malignant phenotypes, including proliferation, survival, and migration of TNBC. The immune-inflamed subgroup exhibited significantly lower half-maximal inhibitory concentration values for common anti-tumor drugs, including palbociclib, ribociclib, mitoxantrone, and sorafenib (T-test, P < 0.001). This may be related to the fact that the immune-inflamed subgroup has more plasmacytoid dendritic cells (pDCs) and B cells than those in immune-desert subgroups (P < 0.001).
Conclusions: Differences in specific cell infiltration can lead to increased sensitivity of the immune-inflamed subgroup to anti-tumor drugs. The proposed lncRNA model holds great promise to assess the immune landscapes and therapeutic reactions of TNBC patients.
Keywords: LncRNA; drug sensitivity; immune infiltration; immune model; triple negative breast cancer.
AJTR Copyright © 2024.