External Validation of a Previously Developed Deep Learning-based Prostate Lesion Detection Algorithm on Paired External and In-House Biparametric MRI Scans

Radiol Imaging Cancer. 2024 Nov;6(6):e240050. doi: 10.1148/rycan.240050.

Abstract

Purpose To evaluate the performance of an artificial intelligence (AI) model in detecting overall and clinically significant prostate cancer (csPCa)-positive lesions on paired external and in-house biparametric MRI (bpMRI) scans and assess performance differences between each dataset. Materials and Methods This single-center retrospective study included patients who underwent prostate MRI at an external institution and were rescanned at the authors' institution between May 2015 and May 2022. A genitourinary radiologist performed prospective readouts on in-house MRI scans following the Prostate Imaging Reporting and Data System (PI-RADS) version 2.0 or 2.1 and retrospective image quality assessments for all scans. A subgroup of patients underwent an MRI/US fusion-guided biopsy. A bpMRI-based lesion detection AI model previously developed using a completely separate dataset was tested on both MRI datasets. Detection rates were compared between external and in-house datasets with use of the paired comparison permutation tests. Factors associated with AI detection performance were assessed using multivariable generalized mixed-effects models, incorporating features selected through forward stepwise regression based on the Akaike information criterion. Results The study included 201 male patients (median age, 66 years [IQR, 62-70 years]; prostate-specific antigen density, 0.14 ng/mL2 [IQR, 0.10-0.22 ng/mL2]) with a median interval between external and in-house MRI scans of 182 days (IQR, 97-383 days). For intraprostatic lesions, AI detected 39.7% (149 of 375) on external and 56.0% (210 of 375) on in-house MRI scans (P < .001). For csPCa-positive lesions, AI detected 61% (54 of 89) on external and 79% (70 of 89) on in-house MRI scans (P < .001). On external MRI scans, better overall lesion detection was associated with a higher PI-RADS score (odds ratio [OR] = 1.57; P = .005), larger lesion diameter (OR = 3.96; P < .001), better diffusion-weighted MRI quality (OR = 1.53; P = .02), and fewer lesions at MRI (OR = 0.78; P = .045). Better csPCa detection was associated with a shorter MRI interval between external and in-house scans (OR = 0.58; P = .03) and larger lesion size (OR = 10.19; P < .001). Conclusion The AI model exhibited modest performance in identifying both overall and csPCa-positive lesions on external bpMRI scans. Keywords: MR Imaging, Urinary, Prostate Supplemental material is available for this article. © RSNA, 2024.

Keywords: MR Imaging; Prostate; Urinary.

Publication types

  • Validation Study

MeSH terms

  • Aged
  • Algorithms
  • Deep Learning*
  • Humans
  • Image Interpretation, Computer-Assisted / methods
  • Image-Guided Biopsy / methods
  • Magnetic Resonance Imaging* / methods
  • Male
  • Middle Aged
  • Prostate / diagnostic imaging
  • Prostate / pathology
  • Prostatic Neoplasms* / diagnostic imaging
  • Retrospective Studies