In this study, the mass balance, pharmacokinetics (PK) and metabolism of atuliflapon, a novel 5-lipoxygenase-activating protein inhibitor, were investigated in healthy male subjects. A single oral dose of 200 mg [14C]atuliflapon suspension was administered to six healthy male subjects. Mass balance, PK and metabolite profiles of atuliflapon were analyzed using radioactivity monitoring and liquid chromatography with mass spectrometry analysis. The safety of atuliflapon was assessed during the study. Atuliflapon was rapidly absorbed with a median tmax of 1.5 h, followed by a biphasic decline in plasma exposure rendering a terminal half-life of ~20 h. Unchanged atuliflapon was the predominant radioactive component in plasma, accounting for 40.1% of the total drug-related exposure (DRE), while a direct N-glucuronide was the only metabolite exceeding 10% of DRE, accounting for 20.9%. Renal excretion of intact atuliflapon accounted for <1% of the administered dose. In total 85.2% of administered radioactivity was recovered over 312 h with 79.3% and 5.9% in feces and urine, respectively. Parent atuliflapon contributed to approximately 40% of the recovered dose in excreta, while metabolites resulting from phase 1 oxidative pathways accounted for more than 30% of the excreted dose. Overall, a single oral dose of 200 mg [14C]atuliflapon suspension was well tolerated in healthy male subjects. The human metabolism and disposition data obtained will support future development and submissions of atuliflapon as a potential candidate drug for the treatment of cardiovascular, cardiorenal, and respiratory indications.
Keywords: Atuliflapon; human mass balance; metabolism; pharmacokinetics; radiolabeled study.
© 2024 AstraZeneca. Pharmacology Research & Perspectives published by British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics and John Wiley & Sons Ltd.