The Systemic Effect of Ischemia Training and Its Impact on Bone Marrow-Derived Monocytes

Cells. 2024 Sep 24;13(19):1602. doi: 10.3390/cells13191602.

Abstract

Objective: Monocytes are innate immune cells that play a central role in inflammation, an essential component during neovascularization. Our recent publication demonstrated that ischemia training by 24 h unilateral occlusion of the femoral artery (FA) can modify bone marrow-derived monocytes (BM-Mono), allowing them to improve collateral remodeling in a mouse model of hindlimb ischemia. Here, we expand on our previous findings, investigating a potential systemic effect of ischemia training and how this training can impact BM-Mono.

Methods and results: BM-Mono from mice exposed to ischemia training (24 h) or Sham (same surgical procedure without femoral artery occlusion-ischemia training) procedures were used as donors in adoptive transfer experiments where recipients were subjected to hindlimb ischemia. Donor cells were divided corresponding to the limb from which they were isolated (left-limb previously subjected to 24 h ischemia and right-contralateral limb). Recipients who received 24 h ischemic-trained monocytes isolated from either limb had remarkable blood flow recovery compared to recipients with Sham monocytes (monocytes isolated from Sham group-no ischemia training). Since these data suggested a systemic effect of ischemic training, circulating extracellular vesicles (EVs) were investigated as potential players. EVs were isolated from both groups, 24 h-trained and Sham, and the former showed increased expression of histone deacetylase 1 (HDAC1), which is known to downregulate 24-dehydrocholesterol reductase (Dhcr24) gene expression. Since we previously revealed that ischemia training downregulates Dhcr24 in BM-Mono, we incubated EVs from 24 h-trained and Sham groups with wild-type (WT) BM-Mono and demonstrated that WT BM-Mono incubated with 24 h-trained EVs had lower gene expression of Dhcr24 and an HDAC1 inhibitor blunted this effect. Next, we repeated the adoptive transfer experiment using Dhcr24 KO mice as donors of BM-Mono for WT mice subjected to hindlimb ischemia. Recipients who received Dhcr24 KO BM-Mono had greater limb perfusion than those who received WT BM-Mono. Further, we focused on the 24 h-trained monocytes (which previously showed downregulation of Dhcr24 gene expression and higher desmosterol) to test the expression of a few genes downstream of the desmosterol pathway, confirm the Dhcr24 protein level and assess its differentiation in M2-like macrophage phenotype. We found that 24 h-trained BM-Mono had greater expression of key genes in the desmosterol pathway, such as liver X receptors (LXRs) and ATP-binding cassette transporter (ABCA1), and we confirmed low protein expression of Dhcr24. Further, we demonstrated that ischemic-trained BM-Mono polarized towards an anti-inflammatory M2 macrophage phenotype. Finally, we demonstrated that 24 h-trained monocytes adhere less to endothelial cells, and the same pattern was shown by WT BM-Mono treated with Dhcr24 inhibitor.

Conclusions: Ischemia training leads to a systemic effect that, at least in part, involves circulating EVs and potential epigenetic modification in BM-Mono. These ischemic-trained BM-Mono demonstrated an anti-inflammatory phenotype towards M2 macrophage differentiation and less ability to adhere to endothelial cells, which is associated with the downregulation of Dhcr24 in those cells. These data together suggest that Dhcr24 might be an important target within monocytes to improve the outcomes of hindlimb ischemia.

Keywords: extracellular vesicles; hindlimb ischemia; inflammation; ischemia training; monocytes; systemic effect.

MeSH terms

  • Animals
  • Bone Marrow Cells / metabolism
  • Hindlimb / blood supply
  • Ischemia* / metabolism
  • Ischemia* / pathology
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Monocytes* / metabolism
  • Physical Conditioning, Animal