Active, fully biobased film-forming dispersions (FFDs) with highly promising results for sliced soft bread preservation were successfully elaborated from carboxymethyl cellulose (CMC) and chitosan (CH) using a simple method based on pH adjustments. They consisted of the association of polysaccharides and oleic acid (OL) added with cinnamon (CEO) or ginger (GEO) essential oils. The chemical compositions of the commercial essential oils were first determined via GC/MS, with less than 3% of compounds unidentified. The films obtained from FFDs were characterized by SEM, FTIR and DSC, indicating specific microstructures and some interactions between essential oils and the polymer matrix. CEO-based films exhibited higher antioxidant properties and a lower minimal inhibitory concentration in terms of antifungal properties. From experiments on sliced soft bread, the ginger-based films could increase the shelf life up to 20 days longer than that of the control. Even more promising, cinnamon-based films led to complete fungal inhibition in bread slices that was maintained beyond 60 days. Enumeration of the yeasts and molds for the FFD-coated breads revealed complete inhibition even after 15 days of storage with the FFDs containing the highest concentration of CEO.
Keywords: antifungal; antioxidant; bread preservation; carboxymethylcellulose; chitosan; cinnamon essential oil; ginger essential oil; oleic acid.