The adoption of UAVs in defence and civilian sectors necessitates robust communication networks. This paper presents a routing protocol for Cognitive Radio Unmanned Aerial Vehicles (CR-UAVs) in Flying Ad-hoc Networks (FANETs). The protocol is engineered to optimize route selection by considering crucial parameters such as distance, speed, link quality, and energy consumption. A standout feature is the introduction of the Central Node Resolution Factor (CNRF), which enhances routing decisions. Leveraging the Received Signal Strength Indicator (RSSI) enables accurate distance estimation, crucial for effective routing. Moreover, predictive algorithms are integrated to tackle the challenges posed by high mobility scenarios. Security measures include the identification of malicious nodes, while the protocol ensures resilience by managing multiple routes. Furthermore, it addresses route maintenance and handles link failures efficiently, cluster formation, and re-clustering with joining and leaving new nodes along with the predictive algorithm. Simulation results showcase the protocol's self-comparison under different packet sizes, particularly in terms of end-to-end delay, throughput, packet delivery ratio, and normalized routing load. However, superior performance compared to existing methods, particularly in terms of throughput and packet transmission delay, underscoring its potential for widespread adoption in both defence and civilian UAV applications.
Keywords: cognitive radio network; dynamic topology; flying ad hoc network; routing protocol; unmanned aerial network.