The prevalence of obesity is increasing globally, with approximately 700 million obese people worldwide. Currently, regulating energy homeostasis by increasing energy expenditure is attracting attention as a strategy for treating obesity. White adipose tissue is known to play a role in accumulating energy by storing excess energy, while brown adipose tissue expends energy and maintains body temperature. Thus, the browning of white adipose tissue has been shown to be effective in controlling obesity. Hedera helix (H. helix) has been widely used as a traditional medicine for various diseases. In several previous studies, hederagenin (HDG) from H. helix has demonstrated many biological activities. In this study, we investigated the antiobesity effect of HDG on fat browning in 3T3-L1 adipocytes. Consequent to HDG treatment, a reduction in lipid accumulation was measured through oil red O staining. In addition, this study investigated that HDG increases energy expenditure by upregulating the expression of several targets related to thermogenesis, including uncoupling protein 1 (UCP1). This process involves inhibiting lipogenesis via the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway and promoting lipolysis through the protein kinase A (PKA) pathway. HDG is expected to be effective in promoting fat browning, indicating its potential as a natural antiobesity candidate.
Keywords: 3T3-L1; Hedera helix; fat browning; hederagenin; uncoupling protein 1.