The integration of enzymes with semiconductor light absorbers in semiartificial photosynthetic assemblies offers an emerging strategy for solar fuel production. However, such colloidal biohybrid systems rely currently on sacrificial reagents, and semiconductor-enzyme powder systems that couple fuel production to water oxidation are therefore needed to mimic an overall photosynthetic reaction. Here, we present a Z-scheme colloidal enzyme system that produces fuel with electrons sourced from water. This "closed-cycle" semiartificial approach utilizes particulate SrTiO3:La,Rh and BiVO4:Mo (light absorbers), hydrogenase or formate dehydrogenase (cocatalyst), and a molecular cobalt complex (a redox mediator). Under simulated solar irradiation, this system continuously generates molecular hydrogen or formate, while co-producing molecular oxygen for 10 h using only sunlight, water, and carbon dioxide as inputs. In-depth analysis using quartz crystal microbalance, photoelectrochemical impedance spectroscopy, transient photocurrent spectroscopy, and intensity-modulated photovoltage spectroscopy provides mechanistic understanding and characterization of the semiconductor-enzyme hybrid interface. This study provides a rational platform to assemble functional semiartificial colloidal Z-scheme systems for solar fuel synthesis.