Satellite dish-like nanocomposite as a breakthrough in single photon detection for highly developed optoelectronic applications

Sci Rep. 2024 Oct 18;14(1):24471. doi: 10.1038/s41598-024-75203-9.

Abstract

A nanocomposite with a unique satellite dish-like structure, termed arsenic (III) oxide iodide (AsO2I)/polypyrrole (Ppy) intercalated with iodide ions (AsO2I/Ppy-I), has been meticulously developed via a two-step process. It features natural satellite dish-like nanostructures, potentially serving as nanoresonators for efficient single photon absorption. With a bandgap of 2.8 eV, the AsO2I/Ppy-I nanocomposite efficiently absorbs photons in the UV and visible light regions, making it suitable for single photon detection. Impressive performance is seen in photocurrent sensitivity measurements, recording values of 0.017 mA.cm-2 under white light and 0.009 mA.cm-2 under monochromatic light at 340 nm. Additionally, it exhibits high responsivity and detectivity, with peak values at wavelengths of 340 nm and 440 nm associated with the diameter of the Satellite dish nanostructure. Cost-effectiveness and simple synthesis methods make it attractive for industrial applications, while its unique structural characteristics and enhanced optical properties position it as a valuable asset in optoelectronic technologies. It holds promise as a leading material in advanced quantum technology, marking a significant leap forward in optoelectronic technologies, with potential applications in quantum cryptography, communication, and computing.

Keywords: Arsenic (III) oxide iodide; Detectivity; Iodine; Nanocomposite; Polypyrrole; Responsivity.