Background: Mesial temporal sclerosis (MTS) is the most common pathology associated with drug-resistant mesial temporal lobe epilepsy (mTLE) in adults. Most atrophic hippocampi can be identified using MRI based on standard epilepsy protocols; however, difficulties can arise in cases where sclerotic changes in the hippocampus are subtle or non-epilepsy-specific protocols have been implemented. In such cases, quantitative methods, such as T1-weighted axial series MRIs, are valuable additional tools to complement epilepsy-specific protocols. In the current study, we applied machine learning (ML) techniques to the analysis of brain regions of interest (ROIs), including the hippocampus, thalamus, and cortical areas, to enhance the accuracy of lesion lateralization in MRI.
Methods: This study included 104 patients diagnosed with mTLE, including 55 with lesions on the right side and 49 with lesions on the left side. FreeSurfer software was used to extract features from high-resolution T1-weighted axial brain MRI scans for use in computing lateralization indices (LI) for various brain regions. After using feature selection to pinpoint critical ROIs, the corresponding LI values were used as parameters in training the ML model.
Results: The proposed ML model demonstrated exceptional performance in the lateralization of mTLE, achieving test accuracy of 92.38 % with an AUROC of 0.97.
Conclusion: This study demonstrated the efficacy of ML in detecting instances of MTS from thin-slice T1 images. The proposed method provides valuable insights for surgical planning and treatment. Nonetheless, additional research will be required to enhance the robustness of the model and rigorously validate its effectiveness and applicability in clinical settings.
Keywords: Lateralization; Machine learning; Magnetic resonance imaging; Mesial temporal lobe epilepsy; Temporal lobe epilepsy.
Copyright © 2024 Elsevier Inc. All rights reserved.