The root of Stemona tuberosa Lour has been used to treat tuberculosis, scabies, and eczema. Polysaccharides are among its main bioactive ingredients. A low-molecular-weight (1819 Da) polysaccharide (SPS2-A) was obtained from the root of S. tuberosa Lour by optimizing three-phase partitioning, purified using an ion chromatography column, and its effects and mechanisms were investigated. Structural analysis revealed that SPS2-A contained arabinose, galactose (Gal), glucose (Glc), xylose, and mannose. The SPS2-A backbone structure comprised sugar residues →4)-α-D-Glcp-(1→, →4)-α-D-Galp-(1→, and →4,6)-β-D-Galp-(1→, while the side chain primarily comprised α-D-Glcp-(1 → connected to the O-6 position of the residue →4,6)-β-D-Galp-(1→. In vitro, SPS2-A downregulated the expression of interleukin-6 in lipopolysaccharide-induced RAW264.7 macrophages. In vivo, SPS2-A significantly downregulated the expression of myeloperoxidase, interleukin-6, interleukin-1β, and tumor necrosis factor-α in bronchoalveolar lavage fluid and lung tissue. Western blotting analysis indicated that SPS2-A reduced lung inflammation in mice with sepsis-induced acute lung injury by activating the nuclear factor κB pathway. These results suggest that SPS2-A is a potential anti-inflammatory candidate for the treatment of sepsis-induced acute lung injury.
Keywords: Anti-inflammatory activity; Polysaccharides; Reduce lung inflammation; Stemona tuberosa Lour root.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.